博客
关于我
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
阅读量:792 次
发布时间:2023-02-16

本文共 875 字,大约阅读时间需要 2 分钟。

准备工作

首先,确保您的 Python 环境符合要求,建议使用 Python 3.6 或更高版本。接下来,需要安装 Kashgari 库来处理 BERT 模型。

安装 Kashgari

通过以下命令安装适用于您的 TensorFlow 或 Keras 版本的 Kashgari:

  • 如果使用 TensorFlow 2.x(>=2.0.0):

    pip install kashgari>=2.0.0
  • 如果使用 TensorFlow 1.14+(<2.0.0):

    pip install kashgari>=1.0.0,<2.0.0
  • 如果使用 Keras(<1.0.0):

    pip install kashgari<1.0.0

选择 BERT 模型

在本地或云端环境中,选择适合您的 BERT 模型。这里推荐使用工大发布的 BERT-wwm-ext 模型。

数据集准备

使用人民日报标注的中文数据集进行训练。以下是数据加载示例:

from kashgari.corpus import ChineseDailyNerCorpus# 加载训练数据train_x, train_y = ChineseDailyNerCorpus.load_data('train')valid_x, valid_y = ChineseDailyNerCorpus.load_data('validate')test_x, test_y = ChineseDailyNerCorpus.load_data('test')# 查看数据集大小print(f"训练数据数量:{len(train_x)}")print(f"验证数据数量:{len(valid_x)}")print(f"测试数据数量:{len(test_x)}")

输出结果:

训练数据数量:20864验证数据数量:2318测试数据数量:4636

创建 BERT嵌入

通过以下代码创建 BERT嵌入:

import kashgarifrom kashgari.embeddings import BERT

模型准备就绪。

转载地址:http://bcjfk.baihongyu.com/

你可能感兴趣的文章
nginx 配置~~~本身就是一个静态资源的服务器
查看>>
Nginx 配置服务器文件上传与下载
查看>>
Nginx 配置清单(一篇够用)
查看>>
Nginx 配置解析:从基础到高级应用指南
查看>>
Nginx 集成Zipkin服务链路追踪
查看>>
nginx 集群配置方式 静态文件处理
查看>>
nginx+mysql+redis+mongdb+rabbitmq 自动化部署脚本
查看>>
nginx+php的搭建
查看>>
nginx+tomcat+memcached
查看>>
Nginx+Tomcat实现动静分离
查看>>
nginx+Tomcat性能监控
查看>>
nginx+uwsgi+django
查看>>
nginx+vsftp搭建图片服务器
查看>>
Nginx-http-flv-module流媒体服务器搭建+模拟推流+flv.js在前端html和Vue中播放HTTP-FLV视频流
查看>>
nginx-vts + prometheus 监控nginx
查看>>
nginx: [emerg] getpwnam(“www”) failed 错误处理方法
查看>>
nginx:Error ./configure: error: the HTTP rewrite module requires the PCRE library
查看>>
Nginx、HAProxy、LVS
查看>>
Nginx下配置codeigniter框架方法
查看>>
Nginx中使用expires指令实现配置浏览器缓存
查看>>