博客
关于我
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
阅读量:796 次
发布时间:2023-02-16

本文共 875 字,大约阅读时间需要 2 分钟。

准备工作

首先,确保您的 Python 环境符合要求,建议使用 Python 3.6 或更高版本。接下来,需要安装 Kashgari 库来处理 BERT 模型。

安装 Kashgari

通过以下命令安装适用于您的 TensorFlow 或 Keras 版本的 Kashgari:

  • 如果使用 TensorFlow 2.x(>=2.0.0):

    pip install kashgari>=2.0.0
  • 如果使用 TensorFlow 1.14+(<2.0.0):

    pip install kashgari>=1.0.0,<2.0.0
  • 如果使用 Keras(<1.0.0):

    pip install kashgari<1.0.0

选择 BERT 模型

在本地或云端环境中,选择适合您的 BERT 模型。这里推荐使用工大发布的 BERT-wwm-ext 模型。

数据集准备

使用人民日报标注的中文数据集进行训练。以下是数据加载示例:

from kashgari.corpus import ChineseDailyNerCorpus# 加载训练数据train_x, train_y = ChineseDailyNerCorpus.load_data('train')valid_x, valid_y = ChineseDailyNerCorpus.load_data('validate')test_x, test_y = ChineseDailyNerCorpus.load_data('test')# 查看数据集大小print(f"训练数据数量:{len(train_x)}")print(f"验证数据数量:{len(valid_x)}")print(f"测试数据数量:{len(test_x)}")

输出结果:

训练数据数量:20864验证数据数量:2318测试数据数量:4636

创建 BERT嵌入

通过以下代码创建 BERT嵌入:

import kashgarifrom kashgari.embeddings import BERT

模型准备就绪。

转载地址:http://bcjfk.baihongyu.com/

你可能感兴趣的文章
Netty工作笔记0007---NIO的三大核心组件关系
查看>>
Netty工作笔记0011---Channel应用案例2
查看>>
Netty工作笔记0013---Channel应用案例4Copy图片
查看>>
Netty工作笔记0014---Buffer类型化和只读
查看>>
Netty工作笔记0020---Selectionkey在NIO体系
查看>>
Vue踩坑笔记 - 关于vue静态资源引入的问题
查看>>
Netty工作笔记0025---SocketChannel API
查看>>
Netty工作笔记0027---NIO 网络编程应用--群聊系统2--服务器编写2
查看>>
Netty工作笔记0050---Netty核心模块1
查看>>
Netty工作笔记0057---Netty群聊系统服务端
查看>>
Netty工作笔记0060---Tcp长连接和短连接_Http长连接和短连接_UDP长连接和短连接
查看>>
Netty工作笔记0063---WebSocket长连接开发2
查看>>
Netty工作笔记0070---Protobuf使用案例Codec使用
查看>>
Netty工作笔记0077---handler链调用机制实例4
查看>>
Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
查看>>
Netty工作笔记0085---TCP粘包拆包内容梳理
查看>>
Netty常用组件一
查看>>
Netty常见组件二
查看>>
netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
查看>>
Netty心跳检测机制
查看>>