博客
关于我
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
阅读量:792 次
发布时间:2023-02-16

本文共 875 字,大约阅读时间需要 2 分钟。

准备工作

首先,确保您的 Python 环境符合要求,建议使用 Python 3.6 或更高版本。接下来,需要安装 Kashgari 库来处理 BERT 模型。

安装 Kashgari

通过以下命令安装适用于您的 TensorFlow 或 Keras 版本的 Kashgari:

  • 如果使用 TensorFlow 2.x(>=2.0.0):

    pip install kashgari>=2.0.0
  • 如果使用 TensorFlow 1.14+(<2.0.0):

    pip install kashgari>=1.0.0,<2.0.0
  • 如果使用 Keras(<1.0.0):

    pip install kashgari<1.0.0

选择 BERT 模型

在本地或云端环境中,选择适合您的 BERT 模型。这里推荐使用工大发布的 BERT-wwm-ext 模型。

数据集准备

使用人民日报标注的中文数据集进行训练。以下是数据加载示例:

from kashgari.corpus import ChineseDailyNerCorpus# 加载训练数据train_x, train_y = ChineseDailyNerCorpus.load_data('train')valid_x, valid_y = ChineseDailyNerCorpus.load_data('validate')test_x, test_y = ChineseDailyNerCorpus.load_data('test')# 查看数据集大小print(f"训练数据数量:{len(train_x)}")print(f"验证数据数量:{len(valid_x)}")print(f"测试数据数量:{len(test_x)}")

输出结果:

训练数据数量:20864验证数据数量:2318测试数据数量:4636

创建 BERT嵌入

通过以下代码创建 BERT嵌入:

import kashgarifrom kashgari.embeddings import BERT

模型准备就绪。

转载地址:http://bcjfk.baihongyu.com/

你可能感兴趣的文章
nginx负载均衡的5种策略
查看>>
nginx负载均衡的5种策略(转载)
查看>>
nginx负载均衡的五种算法
查看>>
Nginx负载均衡(upstream)
查看>>
nginx转发端口时与导致websocket不生效
查看>>
Nginx运维与实战(二)-Https配置
查看>>
Nginx部署_mysql代理_redis代理_phoenix代理_xxljob代理_websocket代理_Nacos代理_内网穿透代理_多系统转发---记录021_大数据工作笔记0181
查看>>
Nginx配置HTTPS服务
查看>>
Nginx配置Https证书
查看>>
Nginx配置http跳转https
查看>>
Nginx配置ssl实现https
查看>>
nginx配置ssl证书https解决公网ip可以访问但是域名不行的问题
查看>>
Nginx配置TCP代理指南
查看>>
NGINX配置TCP连接双向SSL
查看>>
Nginx配置——不记录指定文件类型日志
查看>>
nginx配置一、二级域名、多域名对应(api接口、前端网站、后台管理网站)
查看>>
nginx配置中的服务器名称
查看>>
Nginx配置代理解决本地html进行ajax请求接口跨域问题
查看>>
nginx配置全解
查看>>
Nginx配置参数中文说明
查看>>